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SUMMARY

A state-of-the-art model is developed for the simulation of the dispersion of hazardous toxic or flammable gases
heavier than air in the atmosphere. The model depends on solving the Reynolds-averaged Navier–Stokes
equations in addition to the energy equation and a species concentration equation for the contaminant gas.
Turbulence closure is achieved by using a buoyancy-extended version of the standardk–E two-equation model.
The buoyancy extension is introduced to account for the anisotropic turbulent viscosity resulting from the strong
stratification introduced by the dense gas clouds. The spatial discretization is achieved via the Galerkin finite
element method, while the solution is advanced in time using the forward Euler method. A special element layer
is introduced in the near-ground region to bridge the gap between the solid wall and the main solution domain
where the turbulence model can be applied. This special element layer eliminates the need to apply the wall
function in the standard way where any oscillations in the pressure field could contaminate the velocity solution.
The model was tested against the Burro-8 field trial and could predict the experiment satisfactorily to within the
experimental uncertainties of the reported results.
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1. INTRODUCTION

Many toxic or flammable gases are stored and transported at high pressure or low temperature or
both. If during the course of manufacture, transport or storage of these gases an accidental release to
the atmosphere occurs, the consequences could be fatal. By virtue of their molecular weight or
temperature at release to the atmosphere, some gases could be denser than air. This results in a dense
gas cloud which rolls near the ground for some time before dispersing, which increases the risks of
suffocation, fires or explosions. In the past 30 years, several accidents of this category have been
recorded (see e.g. Reference 1) and have attracted attention to a problem which was not addressed
before. The dispersion of dense gas clouds is complicated in nature compared with passive pollutants
or buoyant plumes. It will depend on the topography of the region, which might include buildings,
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industrial installations, hills, valleys, escarpments and mountains. Because of its heavy weight, the
gas slumps to the ground, forming a flat shape with horizontal dimensions much larger than the
height. The strong density stratification resulting from large temperature gradients reduces turbulence
levels significantly and inhibits turbulence mixing, causing a long delay in the dispersion of the
cloud.

The problem of estimating the consequences of dense gas releases in the atmosphere is of prime
importance in the assessment of the safety of industrial installations and transport systems. The task
of performing such an assessment has been introduced as a regulatory requirement in many countries.
The assessment procedures depend mainly on experience from previous accidents, experimental tests
conducted in laboratory or field tests and mathematical models. The present paper considers the
mathematical modelling of the problem.

There are a large number of models in the literature which range from simple box models to
sophisticated differential models. For a full survey of these models the reader is referred to
References 2 and 3. In summary, mathematical models can be classified into two broad categories:
integral plume models and differential models. Integral plume models mainly prescribe the general
shape of the cloud and use empirical or semiempirical relations to calculate the concentration of the
dense gas. Differential models resort to solving the primary equations that control the flow field and
the dense gas transport and thus have a much lower degree of empiricism. The present model falls
within the second class. These models were developed to overcome the limitations of integral plume
models by reducing the amount of empirical input. However, differential models require much larger
computational effort and their practical application will require the most efficient and robust
numerical procedures in addition to retaining generality and accuracy, which would be required in
many situations such as predicting cases which cannot be modelled using simple models, providing
further understanding of the aspects of dense gas dispersion and the tuning and calibration of simple
models.

In the present study the dense gas dispersion model FEMSET, developed earlier byBetts and
Haroutunian,4 has been further developed and tested. This differential-type model is based on the
solution of the equations of momentum, continuity and energy and a species concentration equation
to predict the dispersion of the contaminant gas. A buoyancy-extended anisotropick–E turbulence
model is used for the closure of the averaged system of flow equations. The numerical procedure
employs the finite element method for spatial discretization, which is convenient for modelling
complex flow domains. The forward Euler method is used for advancing the solution in time for
computational economy. A special near-wall layer of elements is used to apply the wall functions
indirectly, since in the earlier model the direct application of the wall laws led to instabilities
resulting from the interaction of the oscillatory pressure field near the wall and the velocity field. The
special element layer proved to combine accuracy and solution economy in the modelling of the near-
wall region.

The model has been tested against a wide range of 2D flows5,6 and has proved to be a robust two-
equation flow solver. Dense gas dispersion tests were conducted to simulate field and laboratory
tests4,7 and in the present study the extended model was used to simulate the Burro- 88 field dense gas
dispersion and could predict the trial qualitatively and quantitatively to a satisfactory accuracy.

2. NUMERICAL MODEL

The instantaneous flow equations for a two-component mixture, which represent the conservation of
mass, momentum, energy and species concentration expressed in Eulerian form with terms of order
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of magnitude relevant to dense gas dispersion problems, have been presented by many authors (see
e.g. References 9 and 10). These equations expressed in tensor notation can be written as
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wherexi, i � 1, 2, 3, refer to co-ordinatesx, y andz respectively in the Cartesian co-ordinate system.
The corresponding velocity componentsui, i � 1, 2, 3, which are usually termedu, v and w
respectively, refer to the velocity components in the above directions. The air–gas mixture density is
termedr and is given by the equation of state (equation (2)). Moreover,p is the pressure deviation
from a reference pressure at a reference densityro andSh is the heat source=sink term in the energy
equation due to external effects such as radiation absorption.
The above system of equations requires the calculation of the mixture density and enthalpy, which are
given by the constitutive relations

r �
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RT �c=Mg � �1 ÿ c�=Ma�
; �2�

h � cpT ; �3�

where

cp � ccpg � �1 ÿ c�cpa: �4�

In deriving this system of equations, it was assumed that the air–gas mixture is essentially dry and
in the gaseous phase, no chemical reactions take place and pressure work and viscous dissipation
terms are negligible in the energy equation. Additionally, Coriolis acceleration terms due to ground
rotation and diffusion terms were neglected in the momentum equations. The last assumptions can be
justified by performing an order-of-magnitude analysis on the basic flow equations.2

The density is calculated in equation (2) usingPo7 rogz instead of the thermodynamic pressure
P� p�Po7 rogz. The value of Po is typically 1 atm (� 101,325 N mÿ2) and p is O(102)–
O(103) N mÿ2 in typical dense gas flows. Thus density changes due to pressure changes are 0�1%–
1% compared with those due to temperature and concentration changes of up to 50%. ThereforeP in
the equation of state can be replaced byPo7 rogz with little loss of accuracy. This decoupling of
density from the pressure deviationp renders the flow incompressible (in the classical concept of
@p=@r!1) and suppresses the pressure waves which might otherwise appear as a solution of the
above system of equations. These pressure waves would have very small time scales, associated with
sonic phase velocities, that would require very small time steps if not suppressed, which would
consequently increase the computational cost considerably. It is worth noting that using the
Boussinesq approximation to suppress pressure waves, whereby density variations are neglected
except in the buoyancy term in the momentum equation,11 is inadequate in dense gas dispersion
problems owing to the large density variations involved.3 An alternative way of suppressing pressure
waves is the anelastic approximation (@r=@t � 0) which is used in the dense gas dispersion model
FEM3.12
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Solving the above system of equations numerically in its instantaneous form is a formidable task
owing to the fine grids required to resolve the smallest scales of turbulence. To overcome this
problem, statistical averaging is introduced. After performing statistical averaging on the equations
and neglecting terms containing a fluctuating density component, they can be written as
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Note that the same notation has been used for the average quantities as for the instantaneous
quantities for simplicity of notation. Any symbol will refer consequently to the averaged value unless
stated otherwise. Moreover, the primed variables refer to the fluctuating components of the
corresponding variables.

It is important to note here that it has been assumed that the turbulent density fluctuations produce
negligibly small dynamical effects in the mean transport equations. Thus, in deriving equation (5),
statistical correlations involving the fluctuating density componentr0 have been omitted. These
omissions can be partially justified by reference to the Boussinesq approximation for density
variations. Here the Boussinesq approximation can be thought of as having been applied to the
fluctuating density component only, while the dynamic effects resulting from mean density variations
in both space and time are fully allowed for.

As a result of the averaging process the following unknown quantities appear in the mean flow
equations:ru0iu

0

j, ru0jh
0 andru0jc

0. The first term represents the turbulent fluxes of momentum and is
usually termed the Reynolds stress tensor. The second term represents the turbulent flux of energy
and the third term represents the turbulent flux of species concentration. The averaging process thus
introduces 12 unknown variables in the mean flow equations. These values are usually approximated
by the use of turbulence models, which is the subject of the following subsection.

2.1. Turbulence model

The turbulence model used to provide additional equations to describe the temporal and spatial
evolution of turbulent fluxes is an extension of the standardk–E model. The standardk–E model uses
the eddy viscosity concept to represent the turbulent fluxes by assuming that these turbulent fluxes are
proportional to the mean gradients of the related variables. In the present extension the generalized
eddy viscosity concept is used, where the scalar or isotropic diffusivities provided by the standardk–E
model are replaced by tensor diffusivities as follows:
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whereKijlm is fourth-order eddy viscosity tensor andKh
ij andKc

ij are second-order tensors denoting the
turbulent diffusivities for energy and species concentration respectively. These tensors are
determined partly from the application of physical constraints and partly from the imposition of
arbitrary constraints. These constraints are detailed in Reference 2. The tensorKijlm takes the form
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The fluctuating velocity ratiov02=w02 has been derived from the algebraic stress model ofGibson and
Launder,13 where in this context onlyv0 is normal to thelocal mean horizontal component of
velocity. This ratio is given by
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wheref is the wall-damping function which in this form is due toRodi.15 The source terms and the
buoyancy termb are detailed below. In equation (7),k and E are evaluated from the differential
equations
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whereUi is defined asrui. Furthermore, the source term and the buoyancy term are written as
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The eddy diffusivity tensors in equations (6b), (6c), (11) and (13) are given by

PrhKh
ij � SccKc

ij � PrrKr

ij � PrkKk
ij � PrEK

E

ij � cm
k2

E

v
02
=w02 0 0
0 v

02
=w02 0

0 0 1

2

4

3

5; �14�

where

Prh � Scc � Prr � Pr �

1�015 � 8�85z
1�0 � 6�45z

for z �
z

L
� 0;

1�015�1�0 ÿ 20�6z�1=4

�1�0 ÿ 12�35z�1=2 for z �
z

L
< 0

8

>
>
>
<

>
>
>
:

�15�

SIMULATION OF DENSE GAS DISPERSION IN ATMOSPHERE 295



and the Monin–Oboukhov length scale becomes
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The above turbulence model constants arecm � 0�09, Prk� 1�0, PrE � 1�25, cE1 � 1�45, cE2 � 1�9
andcE3 � ÿ0�8 for z< 0 and 2�15 for z> 0, where the constantcE3 in the model has been obtained by
Betts and Haroutunian5 from computer optimization using atmospheric surface layer data.

3. NUMERICAL METHODOLOGY

The numerical methodology implemented in the model depends on discretizing the system of
equations governing the flow and turbulent quantities using the Galerkin finite element method. Upon
discretizing the system of equations, it can be written in the symbolic form
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where trilinear (bilinear in 2D) shape functions are used to represent all variables except for the
piecewise constant shape function for pressure.

The time integration scheme was chosen to be fully explicit for reasons of simplicity and storage
and computer time economy. The forward Euler method (FEM) has been adopted and applied in
conjunction with the balancing tensor diffusivity (BTD) technique to march the system of ordinary
differential equations in time. The BTD technique is applied to counter the negative diffusion arising
from the first-order time truncation error associated with the FEM, by adding a positive diffusivity
tensor of equal magnitude. For a full derivation and discussion of the BTD technique see Reference
16.

Application of the above method to the system of matrix equation (17) leads to the explicit
decoupled equations
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where the load vectors have been modified by the addition of the BTD contributions. It should be
noted that the matricesM , Mr, C and D are functions only of the global basis functions and the
global weighting functions and are therefore constant for a given mesh. All other matrices and load
vectors are time-dependent and have to be assembled at every time step. It is also worth mentioning
that all mass matrices have been lumped (i.e. row sum on diagonal) to make their inversion cost-
effective. It has been shown byGreshoet al.17 that mass matrix lumping leads to a degradation of the
accuracy of the transient solution, although the steady state solution is not affected. However, in the
formulation of FEMSET the drawback of mass lumping was considered to be outweighed by the
enormous gains in reducing the computational effort. The consistent mass matrices are banded and
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sparse and their inversion requires a large amount of computer time. The sink terms in thek and E
equations have been treated in a pseudoimplicit manner to enhance numerical stability.2

By requiring the continuity equation (18a) to be satisfied at timen� 1 and combining the resulting
equation with the momentum equation, the following Poisson equation for pressure is obtained:
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1
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It should be noted that the right-hand side of equation (19) differs from that ofChan,12 who made use
of the anelastic approximation.

The resulting pressure matrixCTMÿ1C is banded and symmetric and thus only half of it needs to
be stored. It has been noted that this matrix depends only on the mesh geometry and thus can be
assembled once, reduced and used throughout the solution.

The solution procedure follows from the above pressure matrix and can be summarized in the
following steps.

1. The pressure matrix is assembled, reduced and stored.
2. The field variables are supplied as initial conditions at timet� 0.
3. From the latest field variables the mass matrices associated withh, c, k andE and all the load

vectors are assembled.
4. The enthalpy, mass fraction,k and E fields are advanced in time using their corresponding

equations.
5. The density is calculated at the new time level from the equation of state (equation (2)) using

the values of enthalpy and mass concentration from step 4.
6. The right-hand side of the pressure equation is evaluated.
7. The pressure is obtained by back substitution using the reduced pressure matrix and the

calculated right-hand side.
8. The velocity field is advanced to the new time level.
9. The new time step is obtained from the stability criteria (stability criteria are discussed below)

and steps 3–9 are repeated.

A necessary stability condition for the integration of an advection– diffusion equation using the
FEM is that the equivalent exact equation, advanced by a Taylor series using the FEM, should be well
posed. This requires the diffusivity tensor to be positive definite. The complete stability analysis of
the advection–diffusion equation using forward Euler and Galerkin spatial discretization is difficult to
perform. Here the practice adopted byGreshoet al.16 for determining a suitable time step for the
coupled, non-linear three-dimensional flow equations is employed in FEMSET. This consists of
applying the stability relations

Dt4 1=�2Ki=Dx2
i �; �20a�

Dt4 �1=�ui=Dxi�
2
�

1=2
; �20b�

Dt4Dx2
=Kif1 � �1 � �uiDxi=Ki�

2
�

1=2
g �no summation on i� �20c�

at every grid point for each of the transport equations and taking the smallest time step that results. In
these equations,Ki andxi are the diffusivity and average element size in thei-direction.

All the integrations were done by 2� 2� 2 Gaussian quadrature in the pressure matrix assembly
and in the load vector assembly.

3.1. The near-ground treatment

In the initial stages of model development the wall laws were applied through the wall functions at
a distanced from the wall to avoid the near-wall region where sharp gradients of variables exist,
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which requires a very fine mesh to be predicted reasonably. It also requires another turbulence model,
since the standardk–E model used in the domain cannot be applied in the near-wall region.
Application of the wall function in this way led to interaction between the oscillatory pressure mode
near the ground and the velocity field, over course meshes, through the wall function, in irregular
topography problems and to failure of the simulations.

To overcome this problem and resolve the steeply varying quantities near the wall, a one-element-
thick layer of special elements was used to span the region between the domain that contains all
equations and the real boundary. The direction normal to the wall was aligned with one of the co-
ordinate directions of the element, here termednw. The shape function in thenw-direction is derived
from the rough wall boundary layer velocity profile
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u
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wherez is the distance normal to the wall.
Normalizing this profile by the velocity at the top of the special element of thicknessd and scaling

to the local dimensions of the element provides the shape functionF
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whereZ�ÿ1 at the wall andZ� 1 at the distanced in the direction normal to the wall.
The two- and three-dimensional shape functions are obtained by the tensor product of the logarithmic
shape function in thenw-direction and the linear shape function in the other direction. A similar shape
function is obtained for the enthalpy, while the species concentration is represented by the mother
(trilinear=bilinear) shape function.

The eddy viscosity is obtained within the special element by differentiating equation (21), so that
for constant shear stress across the element ofr�u��2 we have

neff � u
�

k�z � zo�; �23�

andu* can be calculated by assuming local equilibrium in the near-wall region to give

u
�
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where the value ofk is available at the top of the special element from the solution in the main
domain. The domain boundary for computations ofk andE is at the interface with the outer edge of
the special element and the following boundary conditions are used:
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Within the FEMSET formulation the special shape function is used to represent variables in the
special element, while the mother shape function, rather than the special shape function as in
Reference 18, is used for weighting. This makes it possible to conduct integrations with much lower-
order quadrature than that used in FIDAP19 for a similar treatment for smooth walls, while retaining
the accuracy of the solution. The mother shape function is used in the temporal terms in the
momentum and energy equations and in the continuity equation to retain symmetry of the pressure
matrix. Although this causes degradation of continuity in the special element, it is thought to be better
than imposing the condition of zero normal velocity as in the wall function approach. This treatment
can be considered as an improved way of applying wall laws, yet without the need to leave a gap
between the solution domain and the real boundary.
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4. VALIDATION TESTS

The FEMSET model in its original form was validated against the two- dimensional wind tunnel tests
of McQaid20 and showed good agreement with the experiment. These validation tests were reported
by Betts and El-Awad.7 Simulation of the Burro-8 field trial over irregular ground topography using
the model failed during the simulation of the wind field before the injection of the dense gas.2 The
Burro-8 test simulated over flat ground was successful in predicting the major features of the dense
gas cloud qualitatively, but there were significant quantitative discrepancies with the experimental
results.4 The flat ground test was repeated in the present study with the modified near-ground
treatment. This led to minor improvements in the cloud width and height owing to the better
representation of the dense gas cloud in the near-ground region. These results were reported byBetts
and Sayma.21

In the present study, simulation of the Burro-8 field trial over the original irregular topography was
conducted and the simulation produced an acceptable agreement with the experimental results
bearing in mind the uncertainties of the reported experimental results.

The Burro series of liquified natural gas (LNG) experiments was performed at the Naval Weapons
Centre (NWC) at China Lake, California during the summer of 1980. The experiments included eight
LNG dispersion tests with different spill volumes and spill rates under various atmospheric conditions.
The experiments were initialized by spilling LNG onto the surface of a 1 m deep water pond. The spill
pond is about 58 m in diameter; consequently, while the spill is onto water, most of the dispersion occurs
over land. The ground topography of the test site around the pond is shown inFigure 1.

The Burro-8 test turned out to be the most interesting of the nine-test series. This test was
conducted under moderate wind speed and slightly stable atmospheric conditions. This allowed the
gently sloping terrain to affect the cloud behaviour significantly and the gravitational spreading
effects to be pronounced. Since the moderate wind speeds leads to a low Froude number in this test

Figure 1. 3D perspective of ground topography of test site
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case, the wind speed and turbulence levels were significantly affected by the cloud. Thus it was
representative of typical spills of large scale where topography could affect the dense gas dispersion
process. These were the main reasons which led to the selection of this test for validating the model.

A schematic diagram of the solution domain is shown inFigure 2. The x-axis was chosen to be
aligned with the prevailing wind direction, they-axis is the horizontal cross-wind direction and thez-
axis is the vertical direction. Except for the plane adjacent to the ground, all the other boundary
planes were chosen to be parallel to the principal co- ordinate planes to make the application of
boundary conditions easier.

As initial conditions the following one-dimensional expressions were used for the vertical variation
in the flow variables in the atmospheric layer:
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Empirical expressions were used for the functionsc(z) andch(z), while expressions forfk(z) and
fE�z� were obtained by assuming local equilibrium of turbulence as follows:
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Figure 2. Schematic diagram of solution domain
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where

f�z� � �1�0 ÿ 20�6z�1=4
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Equations (27) and (28) were obtained from Reference 14, but modified in this study following the
remarks ofGibson and Launder.13

In the above system of initial conditions the following data of the Burro-8 field test were used:
u
�

� 0�074 m sÿ1, qa�ÿ2�2 W mÿ2, h
�

� 60�3 J kgÿ1, ho� 3�075 J kgÿ1, zo� 2�05610ÿ4 m.
This system of initial conditions was also used as the boundary conditions at the inlet plane ABCD
(seeFigure 2).

Over the top plane BCGF the following boundary conditions were applied:

rKxz
@u

@z
�

@w

@x

� �

� ru2
�

; �29a�

@v

@z
�

@w

@y

� �

� 0; �29b�

ÿp � 2rKzz
@w

@z
� 0; �29c�

rKh
z
@h

@z
� ÿqa; �29d�

@c

@z
� 0; �29e�

k � cÿ1=2
m u2

�

fk�z�; �29f �

E � u3
�

fE�z�=k�z ÿ zd�: �29g�

On the side planes ABFE and CDHG the following boundary conditions were applied:

@u

@y
�

@v

@x

� �

� 0; �30a�

v � 0; �30b�

@w

@y
�

@v

@z

� �

� 0; �30c�

@h

@y
�

@c

@y
�

@k

@y

@E

@y
� 0: �30d�

On the plane EFGH the following boundary conditions were applied:

ÿp � 2rKxx
@u

@x
� ÿ~p; �31a�

@v

@x
�

@u

@y

� �

� 0; �31b�

w � 0; �31c�

@h

@x
�

@c

@x
�

@k

@x
�

@E

@x
� 0; �31d�
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where the value of the pressurep̃ is approximated by extrapolating the pressures from the last two
cross-stream slices of elements at the previous time step.

Over the ground boundary the following boundary conditions were used:

u � 0; v � 0; �32a�

w � 0 �except over the spill area during injection�; �32b�

h � ho; �32c�

ni
@c

@xi
� 0: �32d�

Finally, over the spill source the boundary conditions over the bottom plane described earlier were
used prior to and after the termination of injection and for all the variables exceptw, h andc during
injection. For these variables the following boundary conditions were used during injection:

w �

0 for t4 ÿ 10;
�10 � t�wI=10 for ÿ 104 t < 0;
wI for 04 t < 110;
�120 ÿ t�wI=10 for 1104 t < 120;
0 for t � 120;

8

>
>
>
>
<

>
>
>
>
:

�33a�

h � cpg � Tg � 2100 � 113 J kgÿ1
; �33b�

c � 1�0; �33c�

wherewI � 0�064 m sÿ1 is the steady state value of the vertical injection velocity of the gas andTg

andcpg are the boil-off temperature and gas specific heat at constant pressure of LNG respectively.
The time origin (t� 0) is the instant the injection velocity reaches its steady state. This nominally is
equivalent to the time when the valve is fully opened in the experiment.

4.1. Results of the dense gas simulation

In this simulation the solution domain extended from 100 m upstream of the centre of the spill
pond to 290 m downstream. In the cross-stream direction the solution domain extended from 140 to
140 m (the origin of the co-ordinate system was in the centre of the spill pond). The solution domain
extended vertically to 18 m above the datum level, which was the water surface at the spill pond. A
three- dimensional perspective of the solution domain is shown inFigure 1, while two sections in the
mesh are shown inFigures 3 and 4. The number of elements used was 32� 30�12 in directionsx, y
andz respectively. A total of 48 elements spanned the spill pond, with six elements in thex-direction
and eight elements in they-direction. The first element spacing from the ground ranged from 0�07 to
0�14 m. The mesh used contained 11,520 elements and 13,299 nodal points.

Since the initial conditions do not satisfy continuity, a disturbance occurred at the first time step of
the wind field simulation which caused some wiggles in the velocity field. These wiggles smoothed
and washed through the solution domain. The simulation of the domain wind field before injecting
the dense gas required 2000 time steps.Figure 5shows a vector plot of the velocity field on the plane
y� 0. Although there is still a trace of the wiggles downstream, it was decided to start injection at this
stage, since these wiggles will be washed away long before the arrival of the dense gas cloud.

No problems were encountered throughout the injection period of the dense gas and the results
were recorded every 20 s of the transient solution to enable comparisons with the experimental
results. After termination of the injection, severe spatial wiggles were created locally at and around
the spill pond. The exact reason for these wiggles is not known, but it was thought to be a result of a
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combination of the relatively coarse mesh around the pond and the over-rapid reduction of the
vertical injection velocity during the shutdown of the source. The vertical injection velocity at the
pond convected a certain level of turbulence which decreased rapidly during shutdown of the source,
and the cross-wind coarse mesh was not able to cope with these rapid temporal variations. This is
evident from the gradual decay of the wiggles when the simulation was continued beyond this time
level and the shear stress over the pool increased. The simulation was continued and the wiggles died

Figure 3. Cross-section in mesh parallel tox–z plane aty�ÿ12 m (note magnification inz-direction)

Figure 4. Cross-section in mesh parallel toy–z plane atx�18 m (note magnification inz-direction)
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out completely at time level 200 s. Finally, the simulation process was terminated at time level 300 s.
Ideally, the simulation should have been continued until the dense gas cloud washed out completely
from the domain, but computer resource limitations did not allow that.

Before presenting the results, it should be noted that the calculated concentrationsc in the present
model are mass fractions of the dense gas, while the measured concentrations in the Burro tests were
volume fractions. Thus the present results were converted to volume fractions, which are also referred
to here as volume concentrations, to enable comparisons with the experimental results.

Figure 6shows the volume concentration contours at 1 m height above ground level for time levels
20, 80, 120, 140, 200 and 260 s.Figure 7shows the volume concentration contours over the vertical
planey� 0 for the same time levels, whileFigure 8shows the concentration contours on vertical
planes normal to thex-axis at differentx-positions for the same time levels.

The simulation showed the ability of the model to reproduce the major features of a large-scale
dense gas spill both qualitatively and quantitatively. A qualitative assessment will be considered first;
the quantitative comparisons will follow.

From the early stages of the spill, lateral spreading and upwind movement of the cloud were
noticed. This was obvious in the velocity field and concentration contour plots. Movement towards
the low ground at the left-hand side of the pond looking upstream can also be seen at this stage from
the concentration contour ofFigure 6(a). The beginning of plume bifurcation can also be noticed at
this stage. The relatively high ratio of cross-wind velocity to ambient velocity caused bifurcation of
the cloud, which was also noticed in the aerial photographs taken during the experiment. The vector
plots also showed decoupling of the cloud from the wind shear even at this early stage. This can be
seen from the vertical injection of the gas, which would have been at a smaller angle with the
horizontal if it were affected directly by the ambient wind. This causes the gas to rise above ground
level to a certain height and pour to the ground in all directions, causing the noticed upwind
movement of the cloud. The obstruction to the ambient wind resulting from the cloud caused an
upward movement oof the flow upwind of the spill pond, resulting in the elevated head of the cloud at

Figure 5. Velocity field aty�0 before starting injection of dense gas (note magnification inz-direction)

304 A. I. SAYMA AND P. L. BETTS



the front which can be seen from the vertical concentration contours ofFigure 7. Close packing of the

Figure 6. Horizontal volume concentration contours at 1 m height above ground level at different time levels
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contours upwind of the cloud is also noticeable, which is a result of the upwind movement of the
cloud being opposed by the ambient wind.

Figure 6. (continued)
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At the later stages of the spill the above effects were seen to increase. The cloud bifurcation and the

Figure 6. (continued)
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Figure 7. Vertical volume concentration contours at planey�0 at different time levels
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Figure 7. (continued)
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Figure 8. Vertical volume concentration contours at planes parallel tox�0 at different time levels
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Figure 8. (continued)
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rolling towards the low ground became more noticeable, while the height of the cloud only increased
slightly. The upwind movement of the cloud was seen to increase gradually up to a stationary
distance of 40 m from the edge of the pond.

The cloud lingered above the spill source at least up to the time level 300 s when the simulation
was terminated, although concentration contours show that the cloud started to leave the domain and
move downwind of the source. It seems that the simulated cloud stayed slightly longer than reported
in the experiment over the source. The wiggles resulting after the termination of the injection and the
strong collapse of turbulence over the pond are thought to be behind the delay of the cloud
movement.

Quantitatively, there was reasonable agreement with the experimental results to within the
limitations and accuracy of the reported experimental results. The concentration contours of the
Burro-8 results were plotted using logarithmic interpolation of the concentrations from the sparsely
distributed sensors. For one time level, 160 s (where linear interpolation contours were reported), the
report showed considerable differences if the contours were plotted using linear interpolation.
However, because the logarithmic interpolation produced more conservative results, it was used
throughout the report. The results of the present simulation showed predicted results halfway between
the results of logarithmic interpolation and linear interpolation for that time level.

Figure 9shows the maximum distance travelled by the lower flammability level (LFL) contour
(5% volume concentration) compared with the experimental results. This figure also shows the point
where the linear interpolation was used and the results of the flat ground simulation performed using
FEMSET.21 Although the results of the irregular topography simulation have considerable
differences at intermediate points between sensors, the results have good agreement with the
experiment at positions near experimental sensors (57 m arc and 140 m arc shown in the figure). This
gives rise to the point that the logarithmic interpolation produced excessively conservative results and
that the present simulation produced good agreement with the experiment. This can also be seen from
the time history of the concentrations at two different sensors shown inFigures 10 and 11, where
good agreement between the experimental results and the present simulation is obvious. It should be
noted here that over most of the cloud the typical height of the cloud was about 1 m, which is the
height at which the field test transducers were placed. The top of the cloud is a region of strong
vertical gradient of concentration. Hence small errors in the computation of the cloud height have the
potential for massive changes in the arrival time of the LFL. Under these circumstances the
agreement with the field data is remarkably good.

The Burro-8 data for ground heat flux are available at only two positions, G04 and 57 m and G06
at 140 m from the pond centre. The sensor G04 indicated a maximum heat flux of 400 W mÿ2 at
110 s, but also indicated a value of 140 W mÿ2 before the arrival of the cloud instead of a small
negative value of 2�2 W mÿ2 (the reported level of ambient heat flux of the Burro-8 test). The sensor
G06 produced a maximum heat flux of 180 W mÿ2 at time level 180 s, while the heat flux was
100 W mÿ2 before the arrival of the cloud. In the present simulation, where the positions of storing
the data are slightly different from the sensor positions, the results at the position closest to sensor
G04 showed heat fluxes of 7�1, 3�8 and 1�6 W mÿ2 at time levels 100, 180 and 300 s respectively. At
the position nearest to sensor G06 the heat fluxes were 0�18, 1�42 and 0�22 W mÿ2 at the same time
levels. In interpreting these results, two factors should be remembered. Firstly, the sensor values are
abnormally high before the cloud arrival mentioned above. Secondly, at some time levels and
positions the equationqn � krc1=4

m k1=2
�ho ÿ h� ln�d=zo� used to calculate the heat flux is not

applicable owing to the collapse of turbulence and thus it produced low values of the simulated
results. Extensive investigation of the heat transfer aspects would require the correct level of
turbulence and more reliable experimental results.
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Figure 9. Maximum radial distance travelled by lower flammability limit contour

Figure 10. Time history of concentration at two sensor stations at arc 57 m
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5. CONCLUSIONS

The numerical simulation reported has shown the capability of the computer model in predicting
large-scale dense gas dispersion accidents with reasonable accuracy. It was also demonstrated that the
two-equation turbulence model with extensions allowing for the prediction of the effects of
stratification produced good results without imposing case-specific empirical turbulence correctors as
would be required if a less sophisticated turbulence model were used. Moreover, the results
demonstrated that the numerical algorithm can apply this model on a mesh that does not have to be
excessively refined in the vertical direction to retain stability. The differences between the results
obtained and the reported experimental results are considered to be within the uncertainty range of
the reported experimental results. However, the simulation identified several points for further
investigation and development in the model. The local collapse of turbulence in some regions leads to
the suggestion of using a low-Reynolds-number turbulence model. The non-linear eddy viscosity
model would be a potential candidate, since second-moment closure models might require
impractical computational times. Furthermore, improved modelling is required for the effects of
ground heat transfer, which might include submodels for heat conduction in the ground. The desert
tests of Burro-8 were under conditions of low atmospheric humidity. To enable the model to predict a
wider range of scenarios, where the effects of water vapour condensation may be significant, a
suitable submodel with an additional transport equation could be implemented. Further developments
are desirable in the numerical solution procedure to reduce the high computational costs, e.g. the use
of the conjugate gradient method for the pressure solution and the possible use of adaptive meshing to
better resolve the moving high-gradient regions such as the front of the cloud.

APPENDIX: NOMENCLATURE

b buoyancy generation=destruction term
c mass fraction

Figure 11. Time history of concentration at two sensor stations at arc 140 m
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c global vector containing nodal values ofc
cm, cE1, cE2, cE3 emperical coefficients ink– E model
cp, cpa, cpg specific heats at constant pressure of gas mixture, ambient air and contaminant gas
C pressure gradient matrix operator
CTMÿ1C consistent Poisson pressure matrix
D velocity divergence matrix operator
f load vector in discretized momentum equation
fy load vector in discretizedy-equation (y� h, c, r, k, E)
g gravitational acceleration constant
h specific static enthalpy
ho ground surface enthalpy
h
�

ambient friction enthalpy,qa=ku
�

rcpa

h� h=h
�

k turbulent kinetic energy
Kijlm fourth-order eddy viscosity tensor
Ky

ij second-order eddy diffusivity tensor (y� h, c, r, k, E)
L Monin–Obukhov length scale,ÿu3

�

rho=kgqa

M mass matrix in discretized momentum equation
Ma, Mg molecular weights of ambient air and contaminant gas
My mass matrix in discretizedy-equation (y� h, c, k, E)
Mr mass matrix in continuity equation
nw direction normal to wall
p deviation pressure
p global vector containing nodal values ofp
p̃ pressure approximated by projection to wall
P thermodynamic pressure
Po reference absolute pressure
Pry turbulent Prandtl number (y� h, r, k, E)
qa ambient heat flux from underlying ground
R universal gas constant
s shear generation term ink-equation
Sc turbulent Schmidt number
Sh source term in energy equation
t time
T absolute temperature
u, v, w three components of velocity vector in Cartesian co-ordinate frame
U, V, W three components of vectorrui (i � 1, 2, 3)
U global vector containing nodal values ofU, V andW
u
�

ambient friction velocity
u� u=u

�

u0ic
0 turbulent mass flux vector

u0ih
0 turbulent enthalpy flux vector

u0iu
0

j Reynolds stress tensor
wI maximum gas injection velocity
x, y, z three axes of global Cartesian co-ordinate frame
zd height of ground above fixed datum level
zo ground surface roughness scale
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Greek letters

d normal distance between boundary of computational domain and nearby solid
surface

dij Kronecker delta
t time step
E viscous dissipation rate ofk
z z7 zd=L
Z local dimension of special shape function innw- direction
k von Karman constant
n, nt kinematic molecular viscosity, kinematic eddy viscosity
neff effective viscosity,n� nt

r density
r global vector containing nodal values ofr
ro reference density at which gravity force is zero
f(z), fh(z) dimensionless gradients of wind speed and enthalpy in atmospheric surface layer
fk(z), fc(z) dimensionless profiles ofk and E in surface layer
F

s special element shape function
c(z), ch(z) functions off(z) andfh(z)

Superscripts

( )n time level of time-stepping solution algorithm
( )ÿ1 matrix inversion
( )T transpose of matrix
(_) partial differentiation with respect to time

Abbreviations

BTD balancing tensor diffusivity
FEM forward Euler method
LFL lower flammability level
LNG liquified natural gas
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